Search results for "lattice QCD"

showing 10 items of 241 documents

Relativistic, model-independent, multichannel $2\to2$ transition amplitudes in a finite volume

2016

We derive formalism for determining $\textbf{2} + \mathcal J \to \textbf{2}$ infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calcu…

PhysicsFinite volume methodBethe–Salpeter equationNuclear Theory010308 nuclear & particles physicsDegenerate energy levelsHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesObservableParity (physics)Lattice QCD01 natural sciencesScattering amplitudeNuclear Theory (nucl-th)High Energy Physics - LatticeQuantum mechanics0103 physical sciences010306 general physicsBosonMathematical physics
researchProduct

Ds0⁎±(2317)and KD scattering fromBs0decay

2015

We study the B¯s0→Ds−(KD)+ weak decay, and look at the KD invariant mass distribution, for which we use recent lattice QCD results for the KD interaction from where the Ds0⁎(2317) resonance appears as a KD bound state. Since there are not yet experimental data on this reaction, in a second step we propose an analysis method to obtain information on the Ds0⁎(2317) resonance from the future experimental KD mass distribution in this decay. For this purpose, we generate synthetic data taking a few points from our theoretical distribution, to which we add a 5% or 10% error. With this analysis method, we prove that one can obtain from these “data” the existence of a bound KD state, the KD scatter…

Scattering amplitudePhysicsNuclear and High Energy PhysicsParticle physicsMass distributionScatteringBound stateResonanceScattering lengthInvariant massLattice QCDMolecular physicsPhysics Letters B
researchProduct

Lattice QCD and the anomalous magnetic moment of the muon

2019

The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, notably the hadronic vacuum polarisation (HVP) and the hadronic light-by-light (HLbL) scattering contributions, which are commonly evaluated using a data-driven approach and hadronic models, respectively. Given that the discrepancy between theory and experiment is currently one of the most intriguing …

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHadronLattice field theoryStrong interactionHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesLattice QCD01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesHigh Energy Physics::Experiment010306 general physics
researchProduct

Nonperturbative renormalization and O(a) -improvement of the nonsinglet vector current with Nf=2+1 Wilson fermions and tree-level Symanzik improved g…

2019

In calculating hadronic contributions to precision observables for tests of the Standard Model in lattice QCD, the electromagnetic current plays a central role. Using a Wilson action with $\mathrm{O}(a)$ improvement in QCD with ${N}_{\mathrm{f}}$ flavors, a counterterm must be added to the vector current in order for its on-shell matrix elements to be $\mathrm{O}(a)$ improved. In addition, the local vector current, which has support on one lattice site, must be renormalized. At $\mathrm{O}(a)$, the breaking of the $\mathrm{SU}({N}_{\mathrm{f}})$ symmetry by the quark mass matrix leads to a mixing between the local currents of different quark flavors. We present a nonperturbative calculation…

QuarkPhysicsQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyLattice field theoryLattice QCDFermionMass matrix01 natural sciencesRenormalizationLattice (order)0103 physical sciences010306 general physicsMathematical physicsPhysical Review D
researchProduct

Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data

2013

The pion mass dependence of the nucleon mass within the covariant SU(2) baryon chiral perturbation theory both without and with explicit Delta(1232) degrees of freedom up to order p(4) is investigated. By fitting to a comprehensive set of lattice QCD data in 2 and 2 + 1 flavors from several collaborations, for pion masses M-pi < 420 MeV, we obtain low energy constants of natural size that are compatible with pion-nucleon scattering data. Our results are consistent with the rather linear pion mass dependence showed by lattice QCD. In the 2 flavor case we have also performed simultaneous fits to nucleon mass and sigma(pi N) data. As a result of our analysis, which encompasses the study of fin…

PhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryOrder (ring theory)Light hadron massesLattice QCD01 natural sciencesResonance (particle physics)Perturbation-theoryBaryonPion0103 physical sciencesHigh Energy Physics::ExperimentFísica nuclearPerturbation theory010306 general physicsNucleonNuclear Experiment
researchProduct

Nucleon isovector charges and twist-2 matrix elements with Nf=2+1 dynamical Wilson quarks

2019

We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with nonperturbatively improved ${N}_{f}=2+1$ Wilson fermions, covering four values of the lattice spacing and pion masses down to ${M}_{\ensuremath{\pi}}\ensuremath{\approx}200\text{ }\text{ }\mathrm{MeV}$. Several source-sink separations (typically $\ensuremath{\sim}1.0$ to $\ensuremath{\sim}1.5\text{ }\text{ }\mathrm{fm}$) allow us to assess excited-state contamination. Results on individual ensembles are obtained from simultaneous two-state fits across all observables and all available sou…

PhysicsIsovector010308 nuclear & particles physicsHigh Energy Physics::LatticeLattice field theoryLattice QCD01 natural sciencesPionLattice constantLattice (order)0103 physical sciencesHigh Energy Physics::ExperimentTwist010306 general physicsNucleonMathematical physicsPhysical Review D
researchProduct

Lattice calculation of the pion transition form factor $\pi^0 \to \gamma^* \gamma^*$

2016

We calculate the $\pi^0\to \gamma^*\gamma^*$ transition form factor ${\cal F}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2)$ in lattice QCD with two flavors of quarks. Our main motivation is to provide the input to calculate the $\pi^0$-pole contribution to hadronic light-by-light scattering in the muon $(g-2)$, $a_\mu^{\rm HLbL;\pi^0}$. We therefore focus on the region where both photons are spacelike up to virtualities of about $1.5~$GeV$^2$, which has so far not been experimentally accessible. Results are obtained in the continuum at the physical pion mass by a combined extrapolation. We reproduce the prediction of the chiral anomaly for real photons with an accuracy of about $8-9\%$. We also com…

QuarkPhysicsParticle physicsMuonPhotonHigh Energy Physics::LatticeNuclear TheoryDegenerate energy levelsHadronLattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticePionLattice (order)High Energy Physics::ExperimentNuclear ExperimentProceedings of 34th annual International Symposium on Lattice Field Theory — PoS(LATTICE2016)
researchProduct

The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle

2019

37th International Symposium on Lattice Field Theory, Wuhan, China, 16 Jun 2019 - 22 Jun 2019; PoS(LATTICE 2019)010 (2019).

QuarkParticle physicsneutral currentclover [fermion]High Energy Physics::LatticeHadronstandard modelLattice (group)hep-latWilson [quark]FOS: Physical sciencesLattice QCDelectromagnetic [current]nonperturbativeStandard Modelenergy dependenceHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)quantum chromodynamicshadronic [vacuum polarization]mixingVacuum polarizationcontinuum limitnumerical calculationsParticle Physics - PhenomenologylatticePhysicsElectroweak interactionHigh Energy Physics - Lattice (hep-lat)lattice field theoryflavor: 3 [quark]hep-phParticle Physics - LatticeFermionmass dependence [quark]High Energy Physics - Phenomenologyelectromagnetic [coupling]mixing angle [electroweak interaction]Energy (signal processing)
researchProduct

Cosmic QCD Epoch at Nonvanishing Lepton Asymmetry

2018

We investigate how a lepton asymmetry impacts the cosmic trajectory in the QCD phase diagram. We study the evolution of chemical potentials during the QCD epoch of the early Universe using susceptibilities from lattice QCD to interpolate between an ideal quark gas and an ideal hadron resonance gas. The lepton asymmetry affects the evolution of all chemical potentials. The standard cosmic trajectory is obtained assuming tiny lepton and baryon asymmetries. For larger lepton asymmetry, the charge chemical potential exceeds the baryon chemical potential before pion annihilation.

QuarkParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryHigh Energy Physics - Phenomenology (hep-ph)PionHigh Energy Physics - Lattice0103 physical sciences010306 general physicsmedia_commonQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyLattice QCDUniverseBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The negative-parity spin-1/2 Λ baryon spectrum from lattice QCD and effective theory

2021

The spectrum of the negative-parity spin-1/2 $\Lambda$ baryons is studied using lattice QCD and hadronic effective theory in a unitarized coupled-channel framework. A direct comparison between the two approaches is possible by considering the hadronic effective theory in a finite volume and with hadron masses and mesonic decay constants that correspond to the situation studied on the lattice. Comparing the energy level spectrum and $SU(3)$ flavor decompositions of the individual states, it is found that the lowest two states extracted from lattice QCD can be identified with one of the two $\Lambda(1405)$-poles and the $\Lambda(1670)$ resonance. The quark mass dependences of these two lattic…

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsFinite volume method010308 nuclear & particles physicsHigh Energy Physics::LatticePhysicsQC1-999HadronNuclear TheoryHigh Energy Physics::PhenomenologyParity (physics)Lattice QCD01 natural sciencesBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeLattice (order)0103 physical sciencesEffective field theoryHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct